

Date Planned ://	Daily Tutorial Sheet-3	Expected Duration : 90 Min
Actual Date of Attempt ://	Level-1	Exact Duration :

- 31. An ester (A) with molecular formula $C_9H_{10}O_2$ was treated with excess of CH_3MgBr and the complex so formed was heated with H_2SO_4 to give an olefin (B). Ozonolysis of (B) gave a ketone with molecular formula C₈H₈O which shows positive iodoform test. The structure of (A) is :
 - (A) C6H5COOC9H5

(B) C6H5COOC6H5

C₆H₅COOCH₃ (C)

(D) $p - H_3CO - C_6H_4 - COCH_3$

(D)

- **32**. Which of the following diacid readily gives anhydride on heating?
 - Fumaric acid (B)
- Maleic acid
- (C) Malonic acid
- Terephthalic acid
- $\left(\mathrm{CH_{2}CO}\right)_{2}\mathrm{O} + \mathrm{RMgX} \xrightarrow{\quad \mathrm{H_{2}O} \quad} \mathrm{Pr}\,\mathrm{oduct}\,?\ \left\lceil \left(\mathrm{CH_{2}CO}\right)_{2}\mathrm{O}: \mathrm{Succinic}\ \mathrm{anhydride}\right\rceil$ 33.
 - (A) ROOC(CH2)COOR

(B) RCOCH2CH2COOH

(C) **RCOOR**

- (D) **RCOOH**
- 34. Trans esterification is the process of:
 - (A) conversion of an aliphatic acid to ester
 - (B) conversion of an aliphatic alcohol to ester
 - (C) conversion of one ester to another ester
 - **(D)** conversion of an ester into its components namely acid and alcohol
- 35. Rate of reaction:

$$R-C \stackrel{O}{\swarrow}_{Z} + Nu^{-} \longrightarrow R-C \stackrel{O}{\swarrow}_{Nu} + Z^{-}$$

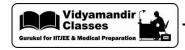
Is fastest when Z is _____ and slowest when Z is ____

- Cl,OC_2H_5 **(B)** NH_4,Cl (A)
- (C) Cl, NH_2
- (**D**) $Cl, O COCH_3$

 $CH_3MgX \xrightarrow[(Excess)]{1.CH_3-C-OC_2H_5} A \xrightarrow[]{Na} B \xrightarrow[CH_3Br]{CH_3Br} C \,. \, The \ product \ C \ is :$ 36.

 $\begin{matrix} \text{O} \\ \parallel \\ \text{CH}_3 - \text{C} - \text{CH}_3 \end{matrix}$ (A)

(B) $(CH_3)_3C - O - CH_3$


(C) $(CH_3)_3C - OH$

- **(D)** $(CH_3)_2C = CH_2$
- $\text{End product of the given reaction is}: \text{CH}_3\text{CH}_2\text{COOH} \xrightarrow{\text{Cl}_2} \xrightarrow{\text{H}_2\text{O}} \text{X} \xrightarrow{\text{Alc. KOH}}$ 37.
 - (A)

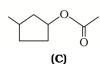
 $\mathrm{CH_2CH_2COOH}$ **(B)**

(C) $CH_2 = CHCOOH$

CH₂CHCOOH | | OH OH **(D)**

- **38.** A nitrogen containing organic compound gave an oily liquid on heating with bromine and potassium hydroxide solution. On shaking the product with acetic anhydride, an antipyretic drug, (acetanilide) was obtained. The reactions indicates that the starting compound is:
 - (A) aniline
- (B) benzamide
- (C) acetamide
- (D) nitrobenzene
- **39.** $CH_3COOCH_3 + excess PhMgBr \longrightarrow product \xrightarrow{H^+} X$

The product X is:


(A) 1, 1-diphenylethanol

- **(B)** 1, 1-diphenylethene
- (C) methyl phenylethanol
- **(D)** methyl phenylketone
- **40.** Ethyl benzoate reacts with PCl_5 to give :
 - (A) $C_2H_5Cl + C_6H_5COCl + POCl_3 + HCl$
- **(B)** $C_2H_5Cl + C_6H_5COCl + POCl_3$
- (C) $CH_3COCl + C_6H_5COCl + POCl_3$
- **(D)** $C_2H_5Cl + C_6H_5COOH + POCl_3$
- 41. $CF_3CO_3H \times X$. Identify X

(A)

42. The product of acid hydrolysis of P and Q can be distinguish by :

$$P = H_2C = CH_3 \qquad H_3C = COCCH_3$$

(A) Lucas reagent

(B) 2, 4-DNP

(C) Fehling's solution

- **(D)** FeCl₃
- **43.** When an acyl chloride is reacted with phenol in presence of pyridine, the product is an:

- (A) ester
- (B) anhydride
- (C) alkene
- (**D**) aldehyde
- **44.** Acetamide and ethyl amine are distinguished by reacting with :
 - (A) Br₂ water

(B) acidic KMnO₄

(C) aq. NaOH and heat

- **(D)** aq. HCl and heat
- **45.** The refluxing of $Me_2N COMe$ in acid gives :
 - (A) $Me_2NH + CH_3COOH$

(B) $Me_2N - COOH + CH_4$

(C) $MeOH + CH_3CONH_2$

(D) $CH_3CH_2NH_2 + CH_3COOH$